Totally Geodesic Submanifolds of Teichmüller Space
نویسنده
چکیده
Main results. Let Tg,n andMg,n denote the Teichmüller and moduli space respectively of genus g Riemann surfaces with n marked points. The Teichmüller metric on these spaces is a natural Finsler metric that quantifies the failure of two different Riemann surfaces to be conformally equivalent. It is equal to the Kobayashi metric [Roy74], and hence reflects the intrinsic complex geometry of these spaces. There is a unique holomorphic and isometric embedding from the hyperbolic plane to Tg,n whose image passes through any two given points. The images of such maps, called Teichmüller disks or complex geodesics, are much studied in relation to the geometry and dynamics of Riemann surfaces and their moduli spaces. A complex submanifold of Tg,n is called totally geodesic if it contains a complex geodesic through any two of its points, and a subvariety of Mg is called totally geodesic if a component of its preimage in Tg,n is totally geodesic. Totally geodesic submanifolds of dimension 1 are exactly the complex geodesics. Almost every complex geodesic in Tg,n has dense image in Mg,n [Mas82, Vee82]. We show that higher dimensional totally geodesic submanifolds are much more rigid.
منابع مشابه
Isotropic Lagrangian Submanifolds in Complex Space Forms
In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.
متن کاملRicci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds
We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.
متن کاملTotally geodesic submanifolds of the complex quadric
In this article, relations between the root space decomposition of a Riemannian symmetric space of compact type and the root space decompositions of its totally geodesic submanifolds (symmetric subspaces) are described. These relations provide an approach to the classification of totally geodesic submanifolds in Riemannian symmetric spaces. In this way a classification of the totally geodesic s...
متن کاملNon existence of totally contact umbilical slant lightlike submanifolds of indefinite Sasakian manifolds
We prove that there do not exist totally contact umbilical proper slant lightlike submanifolds of indefinite Sasakian manifolds other than totally contact geodesic proper slant lightlike submanifolds. We also prove that there do not exist totally contact umbilical proper slant lightlike submanifolds of indefinite Sasakian space forms.
متن کاملTotally geodesic submanifolds of the exceptional Riemannian symmetric spaces of rank 2
The present article is the final part of a series on the classification of the totally geodesic submanifolds of the irreducible Riemannian symmetric spaces of rank 2. After this problem has been solved for the 2-Grassmannians in my papers [K1] and [K2], and for the space SU(3)/SO(3) in Section 6 of [K3], we now solve the classification for the remaining irreducible Riemannian symmetric spaces o...
متن کامل